
prb-OS5 323 GENERAL ELECTRIC CO ARLINGTON VA F/6 9/2
EVALUATION OF SOFTWARE LIFE CYCLE DATA FROM THE PAVE PAWS PROJE--ETC(U)
MAR 80 B CURTIS. S B SHEPPARD. E KRUESI F30602-77-C-01q'I

UNCLASSIFIED RAOC -TRAO0-28 NL

EEEEEEE
EEEEEEEEohEEE

RAD~CT40-2 8

March 19110

00 EVALUATION OF SOFTWARE LIFE
CYCLE DATA FROM THE PAVE PAWS
PROJECT
General Electric Company

Bill Curtis
Sylvia B. Sheppard
Elizabeth Kruesi

APPROVED FOR PUBLIC RELEASE; DISRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

80 0 28

& a

This report has been reviewed by the RADC Public Affairs Office (PA)
is releasable to the National Technical Information Service (NTIS). At ins
it will be releasable to the general public, including foreign nations.

RADC-TR-80-28 has been reviewed and is approved for publication.

APPROVED: ' W7

DONALD F. ROBERTS
Project Engineer

APPROVED:

WENDALL C. BAUMAN, Colonel, USAF
Chief, Information Sciences Division

FOR THE COHl4ANDER:,

JOHN P. 'eS ;:
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (ISIS), Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return this copy. Retain or destroy.

UNCLASSIFIED
SECURI) CLASSIFICATION OF THIS PAGE (I.the Data Ente...d)

'? REPORT DOCUMENTATION PAGE BFRE INSTPLTINS
1. REP UMBE 2GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

/IF, RADC TR-80-281 -A 0 t3
4' TITLE (and Subtitle)9

EVALUATION OF WOFT14ARE LIFE CyC ATFROM 1Sp7-3 o

AND APDRES 0. PRGRMOLEEN.EROETTS

or~~~ S.CNTATOR GRNT NUMBERlS

Aliabtn VAe 22202k77C-1
1I CONROLLIQQNG OFFINAME AND ADDRESS 10 P OA LMN RJCTS

GriffissA AF. NY141WO3UBRK F PAGE4SF

14. MONITORING AGENCY NAME & AOORESS(if different from, Controlling Office) 1S. SECURITY CLASS. reOf or))r

Same UNCLASSIFIED
15.DECLASSIFICATION/ODOWNGRADING

N/A SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

t7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different frot. Report)

Same

IS. SUPPLEMENTARY NOTES

RADC Project Engineer: Don Roberts (ISIS)

Is. KEY WORDS (Continue on reverse side If necessary and Identify by block nutmber)

Modern programming practices; Top-down design; Structured coding;
Program support library; Program design language; IIIPO charts; Chief
programmer teams; Structured walkthroughs; Software quality ass-.rance;
Software error data; Software management; Software database;

-Structured programming
SO no e C~d IIeeaayen2ntijy by block nutmbs rccl ofthPAEAW
DaSTRta weren cole cea over th deve lopment yl h AEPW

software development project. This project was designed to be a
technology demonstration of modern programming practices. The practicesr
studied on this project included:

ITpdw design and implementation,~
,WoStructured coding and precompilers,(otd
13)Program suipoort library_ J

DO , AI. 1473 EDITION OF I Nov6 esis O'eso&TE UNCLASSIFIED

SECURITY CLASSIFICATIOIJ OF THIS PAGE ("ohn Vale Ent eed)j

UNCLASSIFIED
SECURITY CLASSIFICATION Of THIS PAGE(When Da Entered)

C()Program design language and HIPO charts(_0 Chief programmer teams)

(44 Structured walkthroughs,
(.-)Independent test and quality assurance groups

andThe data available for evaluating this project included
personhours, trouble reports, compiler summaries, code progression
and durability charts from the library, management summaries, and
personnel profiles. Only personhours and trouble reports were
collected throughout h .project. The PAVE PAWS project resulted in
211,000 lines of code whiaik took 1,133 personmonths of effort to produce
The total effort, productivity, and number of errors associated with
the project were found to be typical of similar sized software develop-
ment efforts when plotted into the RADC database. After some
redefinition of error categories, the relative frequency of the types of
errors experienced on PAVE PAWS was'found to be similar to other
projects in the RADC error database--AIt was concluded from these data
and our previous study on the LSDB project that modern programming
practices are not miraculous productivity aids. Rather, these practices
represent sound management principles which make software development
more manageable and the prediction of project outcomes more accurate.
Recommendations are also made for methods of collecting software life
cycle data in future studies. N

AccssillFor

Dd Li

F N
T-

UNCLASSIFIED
SECURITY CLASSIFICATION Or T'u PAGE(Whn Dae Entered)

f
-

Table of Contents

Title Page

1. Introduction.
1.1 Purpose of this Research 1
1.2 PAVE PAWS System Description 2
1.3 Software Development Technology. 3

1.3.1 Program Support Library (PSL) 4
1.3.2 Top-down programming/segmentation 6
1.3.3 Structured coding.'................................7
1.3.4 Structured documentation aids 7
1.3.5 Chief programmer teams. 9
1.3.6 Structured walkthroughs 9
1.3.7 Independent test and quality assurance functions . . 10

1.4 Data Collection Techniques. 10
1.4.1 Manual data collection 11
1.4.2 Trouble reporting system 13
1.4.3 Automated data collection. 13
1.4.4 Other sources of data. 18

2. Results 20
2.1 Productivity Analysis 21

2.1.1 Lines of code. 21
2.1.2 Personhours. 21
2.1.3 Productivity 21
2.1.4 Compile summaries. 30

2.2 Error Analyses. 30
2.2.1 Frequency of Trouble Reports 30
2.2.2 Comparison to other projects 36
2.2.3 Comparison of error categories 36
2.2.4 Error trends over time 44

3. Conclusions and Recommendations. 47
3.1 Conclusions 47
3.2 Recommendations 48

3.2.1 Technical approach to life cycle research'. 48
3.2.2 Development of a project database. 49

4. References. 61
Acknowledgements.. 64

Appendix A - Project Summary Forms 65

List of Tables

Table Title Page

I PAVE PAWS Error Categories 15
2 Compile Reason Codes 16
3 Variables in the RADC Database 19
4 Lines of Code by CPCI and CPCG 22
5 Personhours by Work Category and CPCI 23
6 Reasons for Compile by PSL Level 31
7 Frequency of Trouble Reports by Error Category and CPCI . 34
8 Percentage of Trouble Reports by Error Category and CPCI 35
9 Correlation among Error Profiles by CPCI 37

10 Frequency of Error Categories by Project 39
11 Frequency of Error Categories Chosen for Comparison 41
12 Percent of Error Categories Chosen for Comparison 42
13 Correlations among Error Profiles by Project 43
14 Frequency of Error Categories by Time Period for CPCI2 . . 45
15 Percentages of Error Categories within Time Periods for CPCI2 46
16 Domains of Data 54
17 Frequency of Data Collection 58

iv

List of Figures

Figure Title Page
I Logical and coded forms of structured control flow 8
2 Data available from the PAVE PAWS project 12
3 Trouble Report form 14
4 Chronological personhour loadings by CPCI 24
5 Comparison with other projects for total personmonths by

lines of code 25
6 Comparison with modern programming projects for total

personmonths 27
7 Comparison with other projects for productivity by lines

of code 28
8 Comparison with modern programming projects on

productivity 29
9 Code progression chart for CPCIs 2 and 3 32

10 Durability chart for PAVE PAWS project 33
11 Comparison of total errors with other projects 38
12 A model of individual programmer performance 50
13 A mode of team productivity 51
14 Multiple criteria model of project performance 53
15 Predictive use of software metrics 56

v

EVALUATION

This effort was initiated to analyze data collected during two software

development projects, in order to assess the impact of modern programming

practices on software productivity, quality and cost. The effort was under-

taken in response to requirements defined in TPO-5, Software Cost Reduction

and subthrust Software Data Collection and Analysis. A goal of that

subthrust is to establish baselines for software data related to software

costs, errors, productivity, quality and maintenance. The baselines will

be useful in identifying factors and characteristics that contribute to the

above factors in either a negative or positive sense. The results of the

data analysis performed on the first effort are documented in an interim

report, RADC-TR-80-6, Volumes I and II, "A Matched Project Evaluation of

Modern Progranuring Practices" dated February 1980.

This report documents the results of analysis of data collected during

the development of PAVE PAWS software. A number of modern programming

practices were used on the PAVE PAWS software development. Data pertaining

to program compilations, errors and productivity was analyzed and compared

to similar data collected from other development efforts. The results, in

conjunction with other data previously obtained will further the development

of reliable baselines for gauging future software development efforts.

The report also presents a model for software data collection and

analysis that will significantly aid future research in this area.

DONALD F. ROBERTS
Project Engineer

vi

1. INTRODUCTION

1.1 Purpose for This Research

In 1973 Boehm chronicled the tremendous impact of
software on the cost and reliability of advanced information
processing systems. Recently, DeRoze and Nyman (1978)
estimated the yearly cost for software within the Department
of Defense to be as large as three billion dollars. DeRoze
(1977) reported that perhaps 115 major defense systems depend
on software for successful operation. Nevertheless, the
production and maintenance of software for Defense is
frequently inefficient.

In an effort to improve both software quality and the
efficiency of software development and maintenance, a number
of techniques have been developed as alternatives to
conventional programming practices. These modern programming
practices include such techniques as structured coding,
structured design, program support libraries, and chief
programmer teams (W. Myers, 1978; Tausworthe, 1979). The New
York Times project implemented by IBM (Baker, 1972) was
lauded as a successful initial demonstration of these
techniques. Yet, some problems appear to have resulted from
an early release of the system (Yourdon Report, 1976).
Considerable variability has been reported in subsequent
studies sponsored by Rome Air Development Center (RADC) on
the effect of these techniques for various project outcomes
(Belford, Donahoo, & Heard, 1977; Black, 1977; Brown, 1977;
Curtis & Milliman, 1979). Many evaluations have rested
solely on subjective opinions obtained in questionnaires.
There is a critical need for empirical research evaluating
the effects of modern programming practices on software
development projects.

Recently, Curtis and Milliman (1979) evaluated the
effects of modern programming practices using objective
project data collected by RADC. They studied the
effectiveness of the ASTROS plan (Lyons & Hall, 1976)

developed jointly by RAT)C and the Space and Missile Test
Center (SAMTEC) at Vandenburg Air Force Base. This system
provides guidelines for applying structured design and
testing, HIPO charts, chief programmer teams, structured
coding, structured walkthroughs, and a program support
library to software development projects. In order to test
the utility of these techniques, two non-real-time

development projects sponsored by SAMTEC from a system which
provides control and data analysis for missile launches were
chosen for a quasi-experimental comparison. The Launch
Support Data Base (LSDB) was developed under the guidelines
of the ASTROS plan, while the Data Analysis Processor (DAP)
was developed using conventional techniques.

Results indicated that the performance of the LSDB
project was comparable to that of similar-sized software
development projects on numerous criteria. The amount of
code produced per man-month was typical of conventional
development efforts. Nevertheless, the performance of the

LSDB project was superior to that of the DAP project. That
is, the LSDB project team produced higher quality code with
less programming effort and experienced fewer post-
development errors than the DAP project. Thus, Curtis and
Milliman concluded that the benefits of modern programming
practices were often limited by the constraints of
environmental factors such as computer access and turnaround
time. They believed that further evaluative research would
be required before confident testimonials could be given to
the benefits of modern programming techniques. Nevertheless,
the results of their study suggest that future evaluations
will yield positive results if constraints in the development
environment are properly controlled.

In an attempt to gain further evaluative data on the
effectiveness of modern programming practices, RADC
instituted a data collection system on the software
development portion of the PAVE PAWS system development
effort. The software development effort associated with the
PAVE PAWS project was substantially larger than that studied
in the SAMTEC-ASTROS project and offered an opportunity to
study modern programming practices in a multi-team
environment. This report presents the results of analyzing
the PAVE PAWS data.

1.2 PAVE PAWS System Description

Descriptions in this and the following section were
largely based on the final report of the data collection
system filed by Raytheon (1979). PVE PAWS is a fixed base
Phased Array Warning System utilized for the detection and
tracking of Submarine Launched Ballistic Missiles (SLBM's)
which penetrate the rauar coverage. It consists of two
phased array warning sensors located at Otis AFB, MA and
Beale AFB, CA. The primary mission of PAVE PAWS is to
provide the NORAD Cheyenne Mountain Complex (NCMC) with
credible warning of SLBM attacks, including estimation of
launch and impact points and times. As a secondary mission

2

PAVE PAWS supports the USAF SPACETRACK System with earth
satellite vehicle surveillance, tracking, and data collection
as requested by NCMC.

The system includes six display consoles which are used
for systems operations, monitoring and control, missile
warning operations, SPACETRACK operations, training, and
maintenance control. Over thirty different display formats
are independently selectable at the display consoles in order
to provide complete flexibility in monitoring and
controlling the system. Because PAVE PAWS is an on-line
system which is intended to be operational at all times, the
data processing system contains redundant hardware
throughout. In the event of a hardware or software fault,
hardware is automatically reconfigured to eliminate the fault
and resume the primary mission within 8 seconds. The data
processor (duplex CDC CYBER 174's) communicates with one of
two MODCOMP mini-computers which interface directly with the
radar hardware.

In addition to the software to perform the primary and
secondary missions of PAVE PAWS, the system includes a
simulation facility capable of operating concurrently with
the operational software which provides the full range of
mission, threat, communications, and radar stimuli to that
software. Object trajectories, radar cross sections, launch
and impact points, communications messages, radar
environmental effects, and event timing can be simulated
under user specification. The system also records real-time
data pertinent to the performance of the primary and
secondary missions and provides data reduction capabilit;:K
for a wide variety of recording formats.

1.3 Software Development Technology

The PAVE PAWS system specification required that all
software be developed in a modular manner utilizing top-down
structured programming with clear interface specifications to
provide management visibility. Where practical all software
was to be coded in Jovial. The use of the JOVIAL statements
DIRECT/JOVIAL was not permitted. Exceptions in the use of
Jovial were allowed for hiyhly used algorithms, I/O interface
routines, and the operating system/operating system interface
routines which could be coded in a low level language such as
micro code, machine, or assembler for more efficient usage of
the data processing hardware. Fortran was allowed for use in
the Radar Controller.

A number of modern programming practices were used in
the PAVE PAWS software development effort. These practices

3

included:

e Use of a comprehensive Program Support Library sys

* Top-down design and implementation

0 Structured coding, including the use of language
precompilers

0 Use of Program Design Language and HIPO charts

o Chief Programmer Team operations

e Use of structured walkthroughs for reviewing desigi
and code

e Development of independent test and quality assurar
groups

These techniques will be described in greater detail below.

1.3.1 Program Support Library (PSL). The PAVE PAWS PS
is a programming tool specifically designed to support and
enforce top-down, structured programming techniques. This
requires a program storage and maintenance capability which
allows considerable program segmentation and a precompiler
which allows the commercial Jovial, Compass, and Iftran
languages to include the necessary structured constructs. T
PSL also accommodates a structured Program Design Language
(PDL).

The PAVE PAWS PSL was designed to support an orderly
progression of software from a development environment
through integration and test into a delivered product throu
use of a multi-level hierarchical configuration control.
Software segments are entered into the library using a user
specified name (up to 40 characters long) at a user specifi
level. Since each level of the library is distinct from
other levels, the same software element may appear in the
library at several different levels. Thus, to completely
identify an item in the library it is necessary to specify
both the name and level. This provides a simple mechanism
for parallelism in development, error correction, and versi
modification. Within the PSL, seven hierarchical library
levels were defined. Starting with the highest level in th
PSL these levels include:

o DEL - software which is in the field

* FRZ - software which has been qualified

4

I
* TST - software undergoing qualification test

* FIX - software corrections for TST level

e INT - software undergoing integration test

e CPT - software undergoing group test

e PRG - software under development/unit test.

A program element is ready to migrate to the next
highest PSL control level when it has satisfied a predefined
qualification criteria and is to be placed under more
stringent change control. This migration is effected within
the PSL by a raise level command (XMIT) which moves the
element to the specified level. In order to facilitate
changes to segments once they have been raised to higher
levels, the PSL includes a feature called "automatic
drawdown". This feature allows library operations to be
addressed to a specific library level and "drawdown" a copy
of a program element which is under configuration control at
a higher level. Changes can be made to this program element
at the lower level, but it can only migrate back up to its
original level by satisfying the qualifications of each
successively higher level of the PSL. A detailed discussion
of the authorization system required to accomplish change
control is presented in Raytheon (1979).

Code progression and durability charts could be
requested of the PSL and used as management information
tools. The code progression chart is organized as a
CPCG/level matrix which indicates how much effective code
exists (using drawdown as necessary) at each level of the
library. Thus code which exists at the INT level of the
library, also "effectively" exists at the PRG and CPT levels
as well. Since each of the library levels represents a
different testing benchmark, this report allows management to
answer questions like "How much code has been written?", "How
much code has reached functional test?", and "How much code
has been integrated?".

The code durability report acknowledges the fact that
segments which have already been changed at lower library
levels represent a discount to the amount of code under
configuration control at higher PSL levels in the code
progression report. The accounting mechanism employed in the
durability report ignores segments which have been
"drawndown" for further change at a lower level. The
durability report shows management that it is dangerous to
consider a segment as having been successfully integrated
when at the INT level of the library if it is simultaneously

5

undergoing change at the PRG level. To calculate "durable"
lines of code, the PSL counts each unique segment only once.
This count is made at the lowest level of the library where
the segment appears. The value of this report lies in
complementing the progression report in allowing management
to answer questions such as "How stable (durable) is the code
that has been developed?" and "How much effort remains?".

1.3.2 Top-down programming/segmentation. Top-down
programming is based upon a technique of designing and
implementing software by specifying the top level functions
first (G. Myers, 1978; Stevens, Myers, & Constantine, 1974;
Yourdon & Constantine, 1979). The details of each of those
functions and the specification of additional subfunctions
are then developed through successive iterations until the
entire problem is fully developed. Throughout this process
the amount of design or code allowed in a single component is
purposely kept small to make it more manageable. This is
accomplished by treating total functions or subfunctions as
"black box" modules with known input and output
requirements. This modularization (Parnas, 1972) is
reflected in the PSL through program segmentation. A segment
of program code can identify a needed function by using an
INCLUDE statement. This named function can then be dealt with
independently, and it may itself utilize INCLUDE statements
to identify and define even lower level functions. In this
way a program is developed as a set of single page segments
which fit together in a program structure or hierarchy.

The Top-Down aspect of software development is enforced
by identifying each segment placed in the library as either a
top-segment (i.e., the top-level of an independently compiled
program) or as an INCLUDEed segment (one which is simply a
lower-level part of some program). As top-level segments are
entered into the library and INCLUDE statements are
encountered, stubs are generated to act as position holders
until actual code is provided. A program stub identifies the
need for code to perform the named function, it reserves the
name for that function, and since it is part of some already
existing program it specifies the implementation language for
that function. The top-down ordering of software development
is enforced by requiring that INCLUDEed segments cannot be
added into the PSL library unless they are replacing a stub.
In addition, since stubs represent unimplemented software
segments, the number of stubs in a program can be used as a
measure of status or progress.

The development of large software systems presents a
substantial challenge in the management of system components.
The allocation of system requirements to individual Computer
Program Configuration Items (CPCIs) is an important function

6

because from that point forward each CPCI will be managed
with a certain degree of autonomy. Managing these components
includes estimating and planning the effort involved,
allocating resources, assessing and reporting status,
financial management and reporting, and the resolution of
technical problems.

Three principles were observed in defining CPCIs on
PAVE PAWS in order to establish an effective subdivision of
the total software effort:

1) CPCI responsibility should not cross the corporate
boundaries of the prime and subcontractors

2) CPCIs should not cross computer boundaries within
the system hardware

3) Software systems which are executed separately
should be separate CPCIs

Below the CPCI level, software is next broken into
Computer Program Configuration Groups (CPCGs) and Computer
Program Components (CPCs). CPCGs are generally structured
along major functional lines within a CPCI while CPCs
represent individual programs. This structuring of the
software is important because it forms the basis for
allocating system requirements to softwar&, identifying
interface control definitions, subdividing design and
development responsibilities, and making personnel
assigments. In short, a well understood software structure
allows a software project to be effectively managed.

1.3.3 Structured Coding. Structured coding requires the
use of a standard set of program control statements and at
the same time precludes the use of explicit branching
statements. In order to provide the standard set of control
statements for Jovial, Compass, Iftran, and PDL, the PSL
includes a pre-compiler which accepts the structured source
statements and converts them into traditional control forms
which are processed by the appropriate compiler. Figure 1
shows both the logical and coded form of each of the PAVE
PAWS standard control constructs. The requirement to provide
a separate statement to end each of the constructs provides a
closure mechanism for the generation of indented listings.

1.3.4 Structured documentation aids. Hierarchical Input-
Process-Output (HIPO) charts are diagramatic representations

of the operations performed on the data by each major unit of
code (Katzen, 1976; Stay, 1974). A HIPO chart is essentially
a block diagram showing the inputs into a functional unit,
the processes performed on that data within the unit, and the

7

DO WILE predicate

function block

DO UNTIL predicate

function block

~~NDDO

Repetition

DO X - I, J, K (index---- parameters)

function
block

ENDDO

IF predicate

function block 1

ELSE

function block 2

ENDIF
Selection ,__

CASEETMRY parameter

CASE I

function block I

CASE n

function block n

ENDCASE

Figure 1. Logical and coded forms of structured control flow

8

output from the unit. Typically there is one HIPO per
functional unit, with the processing in the unit being
expanded to new HIPOs until the lowest level of detail is
reached. The hierarchical relationships among the HIPO
charts are displayed in a Visual Table of Contents. Examples
of these documentation aids are presented in Appendix B.

1.3.5 Chief programmer teams. Chief programmer teams
are organized so that functional responsibilities such as
data definition, program design, and clerical operations are
assigned to different members (Baker, 1972, Baker & Mills,
1973; Barry & Naughton, 1975). This approach results in
better integration of the team's work, avoiding the isolation
of individual programmers that has often characterized
programming projects. The chief programmer team is made up
of three core members and optional support members who are
programmers. The three core members are:

e Chief programmer - is responsible to the project
manager for developing the system and managing the
programming team. He or she carries technical
responsibility for the project including production
of the critical core of the programming system in
detailed code, direct specification of all other
codes required for system implementation, and review
of the code integration.

* Backup programmer - supports the chief programmer at
a detailed task level so that he or she can assume
the chief programmer's role temporarily or
permanently if required.

* Librarian - assembles, compiles, and link-edits the
programs submitted by project programmers. The
librarian is responsible for maintaining any records
not maintained by the program support library.

1.3.6 Structured walkthroughs - A structured walk-
through is a review of a developer's work (program design,
code, documentation, etc.) by fellow project members invited
by the developer. Not only can these reviews locate errors
earlier in the development cycle, but reviewers are exposed
to other design and coding strategies. A typical walk-
through is scheduled for one or two hours. If the
objectives have not been met by the end of the session,
another walkthrough is scheduled.

While a broad range of people often including customers
were invited to attend design walkthroughs, only a few other
programmers were invited to attend code walkthroughs. During
a walkthrough reviewers are requested to comment on the

9

completeness, accuracy, and general quality of the work
presented. Major concerns are expressed and identified as
areas for potential followup. The developer then gives a
reviewers through his work step-by-step, simulating the

function under investigation. He attempts to take the
reviewers through the material in enough detail to satisfy
the major concerns expressed earlier in the meeting, although
new concerns may arise.

It is the responsibility of the developer to ensure that
the points of concern raised are successfully resolved and
reviewers are notified of the actions taken. It is important
that walkthrough criticism focus on error detection rather
than fault finding in order to promote a readiness to allow
public analysis of a programmer's work.

1.3.7 Independent test and quality assurance functions.
A test organization separate from the software development
group was created which was responsible for developing all
test documentation and for conducting the tests. Further
there was an organizational separation from the software
development group of the group responsible for developing
the Quality Assurance Program, including the establishment
of project-wide procedures, implementation of a Trouble
Reporting system, and providing regular assessments of status
and forecasts for management consideration and action.

1.4 Data Collection Techniques

The intent of the Data Collection effort was to provide)
data which characterized the nature and environment of the
software development activity together with information about
the reasons underlying software changes. The collection of
this data was accomplished in three ways:

1) Manual collection of project and personnel
characteristics.

2) Automatic collection of software change data by the
PAVE PAWS PSL.

3) Automatic recording and summarization of software

change activity as part of a project-wide Trouble
Report/Change Request (TR/CR) system.

Because the bulk of the software design and development had
been completed by the time of contract award, the automatic
collection of data was augmented by a one-time manual
reconstruction of the existing TR/CR database.

10 ,,

Data were collected from IBM's software development
effort on CPCI2 (Tactical Software), CPCI3 (Simulation
Software), CPCI4 (Program Support Library), and CPCI5 (Data
Reduction). No attempt has been made to discuss data from
CPCil (PAVE PAWS Operating System), CPCI6 (Radar Control
Software), or CPCI7 (Signal Processor Software), since they
were developed by a contractor other than IBM and personhours
and lines of code were not available for these CPCIs.

Six classes of data collected on this project are
available for analysis in evaluating the use of modern
programming practices. These types of data are:

e Personhours

e Trouble Reports

e Compile summaries

o Code progressions

e Personnel profiles

e Project summary forms

Unfortunately, only personhours and troubld reports seem to
have been collected throughout the development cycle of the
PAVE PAWS project. Figure 2 presents the time periods
covered by each of the six classes of data. Most development
work seems to have been completed by the Final Qualification
Test held in June 1978. The nature of the data available
for each class will be described separately.

1.4.1 Manual data collection. The following types of
data were provided through the completion of forms by project
personnel (the first three summaries appear in Appendix A).
The General Contract/Project Summary provides general
information abouc the size of the project (cost, people,
software, and documentation) together with a high level
technical description of the project. The Management
Methodology Summary identifies management procedures
utilized, the schedule for PDR's and CDR's, and an
enumeration of the Air Force and Military Standards which
apply. The Design and Processor Summary identifies the data
processor configuration, the programming languages used, the
standards followed, and the software technology utilized.
Finally, Chief Programmer Team Profiles characterize the
educational and work experiences of each of the teams on the
PAVE PAWS software development project. Personhours for the
system and for CPCI's 2, 3, 4, and 5 were collected from May, 11

4J41 "4

a 41
i.I 00

'-44

-0l Goo

V-4-

'.4

in ul 4)n

00

.4 $4
a u,

a A 0

00

12.. 1 0

1976 through June 1978. Personhours were broken into work
categories for each CPCI.

1.4.2 Trouble reporting system. The Trouble Reporting
System provided a report for each problem encountered in code
which had reached the INT level of the PSL from August 1976
to June 1978. The Trouble Reports (TRs) were completed on
standard form (Figure 3). These forms were collected
manually and automated at a later date. The information
includes a description of the problem, an error category, the
CPCI, the CPCG, the priority of the change (emergency,
urgent, or routine), and the level of the hierarchical
library at which the change was made. A brief description of
the error categories is presented in Table 1. The categories
of interest are 1 to 14. Approximately 20% of
the TR's have an "unknown" error code. Although there is a
short description of the problem causing the report to be
written, it would be difficult to accurately assign codes for
the "unknown" group without knowing the software system.

1.4.3 Automated data collection. The Program Support
Library programs were modified to read the compiler list
output and determine compiler detected errors. A special
data file was added to the PSL for the purpose of saving
compiler detected errors. The contents of this data file
were used as inputs to a report program on a weekly basis to
produce the PSL error reports which were provided to RADC as
part of the data collection effort. Impact on the PSL users
was minimal, with one additional field required for
compilation (compile reason code). These compile reason
codes are described in Table 2.

The PSL produced compile listings for the period from
January 1978 to November 1978. These included the program
name, date, program edition, level, lines of code, and
reason for the compile. The majority of the compiles (about
98%) occurred from June 1978 to November 1978. This period
of time occurred after the major development effort was
completed. Thus, these compiles are not representative of
the major portion of the project. For example, the purpose
of many of these compiles was to get printed listings of the
code.

Charts of the code progressions for CPCI's 2 and 3 were
produced for the period from April 1977 through June 1978.
These charts present the amount of code that has been
approved at each of four levels within the PSL over time.
The data were used primarily in the management reporting
system.

Durability charts are simi]ar to code progressions

13

"I I I I I I I
li § ,,~ I

IW

4010

0A I "Ii

a at

L~ 9M

a. SM
C -l x8

I;I

I Iu

14

Table 1

PAVE PAWS Error Categories

Code Title Description

0 Unknown

I Computation Error in implementation of equations

2 Logic Error in decision logic

3 Data Base Error in data base definition

4 Input/Output Error in processing data items
processing

5 Specified function Missing code
not implemented

6 Specified interface This could apply to hardware, operating system,
not implemented other programs, comnon data area, etc.
correctly

7 Unspecified function Additional problem definition needed
required

8 Unspecified interface This could apply to hardware, operating system,
not satisfied other programs, common data areas, etc.

9 Memory/throughput Additional optimization required
optimization

10 Design modification/ Change to current design
enhancement

11 Documentation Type C spec change/user manual/PDL
change only

12 Keypunch Mistake in keypunching

13 Deck setup JCL Procedure error

14 Configuration Build uses mismatched code, wrong IGS package
in Build, etc.

15 Open Not yet closed or categorized

16 Reject Duplicate of another TR

17 Reject Insufficient data to support TR
18 Reject Non-problem

19 Reject Other reason

15

Table 2

Compile Reason Codes

Label Title Description

INITIAL Initial Program Used until the program compiles without
Compile compiler detected error

KEY Keypunch Error Used when keypunching errors are being
corrected

SETUP Deck Setup Error Used when the compile is to correct
a deck setup error such as using the
wrong COMPOOL

COMP Computational Error Used when correcting computational
errors such as the wrong sign or wrong
trigonometric function

LOGICAL Logic Error Used when correcting logic errors such
as NE instead of EQ

DATA Data Base Error Used when correcting data base errors
such as tables not correctly initialized

10 I/O Error Used to correct errors in using the I/0
facilities such as changing reads to
puts or adding necessary WAIT state-
ments

SFNI Specified Function Used to insert functions whose imple-
Not Implemented mentation has been deliberately delayed

SINI Specified Interface Used to insert interface code which
Not Implemented has been deliberately deferred

FUNCHG Unspecified Function Used to implement new or changed
functions

INTCHG Unspecified Interface Used to implement new or changed
interfaces

MEMOPT Memory Optimization Used to compile changes made to improve
core memory utilization

CPUOPT CPU Time Used to compile changes made to improve
Optimization CPU utilization

LOGOPT Logic Simplification Used to compile changes made to the
program to make the logic easier to
understand

COMMENT Comment Used when the compile is to verify
the legality of comments

16

Table 2. (Cont'd)

Abbreviation Title Description

LIST Extra Listing Used when the compile is to obtain
Required an extra listing or an additional

listing feature e.g., generated code

VERIFY Object Module Used when the purpose of the compile
Verification is to guarante. that the object and

source code match. This code should
also be used when a common include
has been changed in another program

COMPILER Compiler Error Used when investigating or correcting
internal computer errors

PPOS Operating System Used when correcting operating system
Error errors

PSL PSL Internal Used when correcting PSL internal
Errors errors

17

except that they present the highest level of the PSL at
which a program is resident without having been drawn down
for additional changes at a lower level. Thus, if a progra
has been approved at the TST level, but it has been drawn
down to the PRG level for further changes, the durability
chart will represent this program at the PRG level. Similar
to code progressions these charts present data collected
between April 1977 and June 1978.

1.4.4 Other sources of data. Unfortunately the PAVE
PAWS source code was unavailable due to security reasons.
However, three additional sources of information regarding
the development of this code are available. These sources
include the Green Sheets which describe the standards
observed on the project. They provided a means of
communication among project personnel on coding practices.
The Configuration Management Plan described the use of the
PSL in controlling the development of the code. Finally the
IBM Software Quality Assurance Plan described the methods
used to manage code quality.

RADC has compiled several databases of information
relevant to software development against which the
performance of the PAVE PAWS project can be assessed. RADC
has collected development data over a large number of
systems, including military and commercial software projects
(Duvall, 1978; Nelson, 1978). These data were collected in
an attempt to establish baselines and parameters typical of
the software development process. Some of the variables
against which the PAVE PAWS data can be compared are listed
in Table 3. RADC has also sponsored a number of studies
which have provided detailed categorizations of error types
(Baker, 1977; Curtis & Milliman, 1979; Fries, 1977; Rye et
al., 1977; Thayer et al., 1976; Williams et al., 1977)
against which the PAVE PAWS error categories can be compared

18

Table 3

Variables in the RADC Database

Variable Definition

Program Size The total number of lines of source code in the
delivered product. This count includes declarations,
internal program data, and comment lines. It does
not include throwaway or external data.

Project Effort The number of man-months required to produce the
software product, including management, design,
test, and documentation.

Project duration The number of months elapsed during the development
phase minus dead time such as work stoppages.

Errors The number of formally recorded software problem
reports for which a correction was made during the
period covered by the project. This does not include
errors from the development portion of the project,
but rather from testing through integration.

Derived parameters Ratios obtained from other variables:

a. Productivity - Size/Effort

b. Average Number of Personnel = Effort/Duration

c. Error Rate = Errors/Size

19

2. RESULTS

The analysis of the data from the PAVE PAWS project will
be presented in two sections. The first section will relate
to productivity, while the second section will present
analyses of the PAVE PAWS error data. Analyses in the first
section will include:

e descriptive data on lines of code and personhours

* productivity comparisons between PAVE PAWS and other
projects

* descriptive data from the PSL database

Analyses in the section on error data will include:

* descriptive data on the PAVE PAWS error categories

* comparisons to error data from other projects

A major goal of this project was to use the data
available to determine the effectiveness of various modern
programming practices separately and in combination.
Unfortunately such analyses are not possible from the PAVE
PAWS data. In order to determine the effectivness of
separate practices, data are required which compare project
outcomes that are attributable to 1) the use versus nonuse
(or degree of use) of a particular practice, 2) the use of a
practice singularly or in combination with sets of other
practices, and 3) environmental limitations on the practices
employed. The first two types of data were not available
since all project members were expected to observe all
programming practices and standards throughout development.
Differences might be detected if there were an indication of
which team developed which sections of code and how these
teams may have differed in their adherence to practices.
However, no information was available which allowed this
determination. The third type of data is available only
indirectly by comparing the PAVE PAWS data to the RADC
software database. Yet, without addition&l data on the
factors which affected performance in these other projects
this type of analysis is only approximate. Thus, assessments
of the effectiveness of individual programming practices must
rest on subjective reports provided by the development
personnel. Comparisons to other projects must also be viewed
warily since Curtis and Milliman (1979) demonstrated that the
benefits of programming practices must be interpreted within

20

the constraints placed on their effectiveness by factors in
the development environment. Nevertheless, the data
presented in this report will be of heuristic interest even
though they are insufficient for determining the measurable
benefits of modern programming practices.

2.1 Productivity Analyses

2.1.1 Lines of code. As is evident in Table 4, the
four CPCIs developed by IBM on the PAVE PAWS project
consisted of approximately 211,000 lines of code. Thus, the
final system is substantially larger than the original
estimated 135,000 card images reported by project personnel
in the General Contract/Project Summary (Appendix A). It is
possible, however, that the number of instructions originally
estimated did not include such lines as comments which would
be included in counting the total lines of code.

It is evident from Table 4 that CPCI2 is composed
of eight CPCGs some of which are as large as CPCIs
3, 4, and 5. Unfortunately, lines of code for the CPCGs in
CPCIs 3, 4, and 5 were not available.

2.1.2 Personhours. The personhours expended in
developing CPCIs 2 through 5 are presented in Table 5. The
169,888 hours for the total project represents 1133 person-
months of effort, using a standard of 150 hours per person-
month. This figure is quite close to the 1089 personmonths
estimated for the project (General Contract/Project Summary,
Appendix A). In preparing this table it was assumed that the
24,415 hours attributed to system level development of the
four CPCIs was involved in preparing some support software
(BLD, COMP, JOV, PROC, STP, and SYST) which was not defined
as part of the four CPCIs. These hours were listed under
code and integrate, but this assumption. may be in error. The
relative hours devoted to the development of each CPCI were
consistent with the size of the code comprising the CPCI.
Figure 4 presents the chronological personpower loadings by
month and CPCI throughout the PAVE PAWS project.

2.1.3 Productivity comparisons with other projects.
Nelson (1978) has produced a number of regression plots of I
delivered source lines of code against various project
outcomes for projects in the RADC database. These scatter-
plots allow a comparison of outcomes among projects while
controlling for project size. Figure 5 presents the scatter-
plot for total personmonths of effort versus delivered source
lines of code. Datapoints for the total PAVE PAWS project
and each CPCI have been separately plotted into the figure.
It is evident that the number of personmonths required to

21

Table 4

Lines of Code by CPCI arnd CPCG

Lines of Code

CPCI Title CPCG CPCI

2 Tactical Software 139,000 *
RTM - Real Time Monitor 13,200
MCTL - Mission Control 5,200
SCM - Satellite Catalogue Manager 10,300
RAM - Radar Manager 12,900
TRCK - Track 16,100
DISP - Displays 45,900
COMM - Communications 8,700
TGDB - TIMX Global Database 26,700

3 Simulation Software 29,000
DPCS - IVata Processing Database
RTSM - Real Time Simulation
SGDB - SIMEX Global Database
TSG - Target Scenario Generation

4 Support Software 16,000
PSL - Program Support Library
LPC - Precompiler
MREP - PSL Management Reports

5 Data Reduction 27,000
DTRD - Data Reduction
PUNT - Print
STRP - Strip
SORT - Sort
LRID - Logical Record ID

Total 211,000

22

Table 5

Personhours by Work Category and CPCI

CPCI

Work Category System 2 3 4 5 Total

System Engineering 9507 3393 1040 0 0 13940

Production Specification 4657 1555 0 0 0 6212

Detail Design 0 9662 2889* 2097* 3609* 18257

Code and Integrate 24415 55004 9052 5329 7872 101672

User Manual 0 0 289 0 0 289

Testing 3816 19836 2326 1594 1946 29518

Total Personhours 42395 89450 15596 9020 13427 169888

Total Personmonths 283 596 104 60 90 1133

Includes personhours devoted to production specification

23

-ii

4ow

4b.

-i 0

0 0

toI

m .1 LM
0~4

In-

S~rMHNOV

24'

.jibMom

o C)

44

0 -

U ~ Q)
o 0.
e-.~~ (flf -v-

+9 $4r

+ +

* P $4

+ + 4 1
4t 4. U

0 i
+* k

+. 4 4-.)4

+. + 4. + > 0
4 4

4 4+ +-4

.4- 'P 4

+te + 0
+$

.4-

StM44S13 wvo

4425'0 -

complete PAVE PAWS was typical of the time required to
complete other projects of this size. That is, the datapoint
for the total project fell next to the regression line, an
indicator of the anticipated value for projects of similar
size. Similar results were observed for each CPCI when
plotted separately. The datapoint for the LSDB project
(Curtis & Milliman, 1979), a modern progrmaming effort
studied in this research project, also fell on the regression
line when it was plotted into the figure. Thus, it does not
appear from these data that modern programming practices lead
to a reduced level of effort (personmonths) in developing
software.

Datapoints for the PAV2 PAWS and LSDB project were
plotted into a scatterplo (Figure 6) similar to that in
Figure 5 which contained only data from projects guided by
modern progrmaming practices. Figure 6 indicates that the
PAVE PAWS and LSDB projects were typical of the level of
effort required in modern programming projects.

Data from the PAVE PAWS project were also compared
against other-projects in the RADC database on a productivity
measure. This measure was developed by dividing the total
delivered lines of code by the personmonths required to
produce them. This is a gross measure of productivity and
there are problems with its interpretation (Jones, 1978).
Nevertheless, it is a measure which is often readily
available for comparison among projects.

Personnel on the PAVE PAWS project produced an average
of 186 lines of delivered source code per personmonth. For
each CPCI the lines per personmonth were as follows: CPC12-
233, CPCI3-279, CPCI4-267, and CPCI5-300. The productivity
of the total PAVE PAWS project is somewhat lower than that
for each CPCI. This is probably due to the work categorized
earlier as system level support software which involved
development but was not delivered as part of CPCIs 2 through
5. Thus, these lines of code cannot contribute to the PAVE
PAWS productivity figures. These productivity values are
plotted into the RADC data in Figure 7, along with an
indication of the productivity of the LSDB project. The
datapoints for the PAVE PAWS project and its CPCIs fall near
the regression line indicating that the level of productivity
for this project was typical of that observed on software
development projects of similar size. The same conclusion
can be drawn for the LSDB project. The data for the PAVE
PAWS and LSDB projects were also plotted into a graph
containing productivity data for modern programming projects
(Figure 8). These values fell close to the average for
modern programming projects. Thus, average productivity
seems to have been achieved on both the PAVE PAWS and LSDB

26

- -. aI ACM

-1
0

U

noo

4-4
04
0)

0~ 0 I

41~

+ +
+ *4*

o -4-4-
4- rz u

z 0

H w

+ +

+ +o ~ - + -

4--

'-4D4

UHNWOI VLI

27-

4.4
0

0.

-.4
-I

0 >1

E-4 Q

0.+ rz

1-4.

+ +)

+ +1+ 04
+ 0

+ 4.1

+ - 4. .4J

+ 4- 0

+ + 04

As..

+ + +* + CA -

+ + 1. 1.4

lot 3cI-_ ___ __ ___ _+___ ___+ ___+___ __
_ _ _ _ _ _ _ _ _ _ _ _ + _ _ _ 0

(S~Oo *a/a+~ IAIIIfcI

28 -

+ 4

+.+ LM
+=

CUr
+ 0

+0

+ 9I

+ + .

+ + 0 .5
+ r0

+

4.4

.0

04

:3

ts a

ksH2KoWKOSU3a/ S3Rn) AUIAIi3flGo~aa

29

projects.

2.1.4 Compile summaries. From January through November
1978, 1756 compiles were performed through the Program
Support Library (Table 6). The vast majority of these
compiles were recorded after June 1978. However, as can be
seen in the code progression chart for CPCIs 2 and 3
presented in Figure 9, the development effort had been
largely completed by June and Final Qualification Tests had
been performed. The same progression is true for CPCIs 4 and
5. The compiles captured by the PSL primarily involve
cleaning up the code prior to delivery to the customer. The
code durability chart for the total project presented in
Figure 10 indicates that while 100% of the code had risen to
the FIX level by June, some code had been drawn down to
lower levels (e.g., PRG) for further work. It is unclear
that the frequency of compiles by reason in Table 6 would
hold true for earlier phases of the project. For instance, a
larger relative frequency of INITIAL compiles would be
anticipated during earlier phases. Of the compiles recorded,
69% were performed to correct algorithmic errors in the code
(i.e., FUNCHG, COMPUTA, LOGIC, and SFNI), while only 2%
involved INITIAL entries of code. Since most development runs
were not recorded in the compiler summary file, there is
little information which can be gleaned from this potentially
valuable source of data for use in evaluating the
effectiveness of modern programming practices on the PAVE
PAWS project. However, the first four compile reasons
correspond to frequent error types, and this relationship
will be discussed in Section 2.2.4.

2.2 Error Analyses

2.2.1 Frequency of Trouble Reports. The frequency of
Trouble Reports by error category for each CPCI and the total
project are presented in Table 7. There were 2099 Trouble
Reports (TRs) filed for CPCIs 2 through 5 which had an
interpretable error category. TRs which listed an error code
corresponding to "unknown" or "reject" categories were not
included in these analyses. CPCI2 accounted for 66% of the
delivered code, and yet 86% of the TRs were reported against
CPCI2. Thus, while the number of errors per thousand lines of
code was only 2.93 for CPCI3, 5.25 for CPCI4, 4.59 for CPCI5,
the rate for CPCI2 was 12.99, bringing the figure for the
total project to 9.95.

The percent of errors falling in each category for each
CPCI and the total project are presented in Table 8. The
most frequent category was logic errors (43%), especially in
CPCI2. Other frequently occurring errors were input/output

30

Table 6

Reasons for Compile by PSL Level

PSL Level

Compile Reason PRG CPT INT FIX TST Total

FUNCHG 358 48 81 16 503

COHPUTA 321 12 1 334

LOGIC 170 30 3 9 212

SFNI 159 6 165

OS 117 117

VERIFY 83 3 3 89

INTCHG 71 12 83

LISTING 46 4 4 15 69

DATA 57 57

KEY 31 3 34

SETUP 24 9 33

INITIAL 29 2 31

UNKNOWN 10 10

I/0 2 5 7

SINI 6 6

COMPILE 4 4

CPUOPT 1 1

PSL 1 1

Total 1490 115 92 56 3 1756

31

Li,

0-

tr

tn

Ln

co

LA

Ln L0

Ln0

32

'41

0
$4

04

04J

04

4

t-n4

- I

Lnf

33 -

Table 7

Frequency of Trouble Reports by Error Category and CPCI

t CPCI

Error Category 2 3 4 5 Total

Computation 64 5 0 2 71

Logic 826 23 31 31 911

I/0 processing 228 5 2 43 278

Database 21 3 0 4 28

Unimplemented function 207 4 0 18 229

Unimplemented interface 97 6 1 4 108

Unspecified function required 27 2 19 0 48

Unspecified interface unsatisfied 26 2 0 0 28

Optimization needed 51 2 3 0 56
Redesign 182 28 27 19 256
Documentation change 38 3 0 3 41

Keypunch 9 0 1 0 10

Deck Setup 8 2 0 2 12

Configuration 22 0 0 1 23

Total 1806 85 84 124 2099

34

______.____*

Table 8

Percentage of Trouble Reports by Error Category and CPCI

CPCI

Error Category 2 3 4 5 Total

Computation 4 6 0 2 3

Logic 46 27 37 25 44

I/O processing 13 6 2 35 13

Database 1 4 0 3 1

Unimplemented function 11 5 0 14 11

Unimplemented interface 5 7 1 3 5

Unspecified function required 1 2 22 0 2

Unspecified interface satisfied 1 2 0 0 1

Optimization needed 3 2 4 0 3

Redesign 10 33 32 15 12

Documentation change 2 4 0 0 2

Keypunch 1 0 1 0 1

Deck setup 1 2 0 2 1

Configuration 1 0 0 1 1

35

processing (13%), redesign (12%), and unimplemented function
(11%). Table 9 presents the correlations between error
profiles among the four CPCIs in order to determine their
relatedness. Moderate correlations were observed among the
CPCI profiles with an average interprofile correlation of
0.61. There was moderate consistency among the types of
errors observed in developing the different CPCIs, but there
were categories such as input/output processing and
unimplemented functions in which the percentage of errors
varied widely among CPCIs. In part, these differences may be
related to differences in the nature of the functions being
implemented in the CPCIs. For example, more I/O errors would
be expected in CPCIs which must perform large amounts of
input or output processing of data. CPCI5 primarily
performed data reduction and had the largest percentage of
I/O processing errors.

2.2.2 Comparison to other projects. In Figure 11 the
PAVE PAWS error counts are plotted into the RADC database
both for the total project and for each CPCI. The datapoints
all fell near the regression line, suggesting that the PAVE
PAWS project experienced a typical incidence of formally
reported errors for projects of similar size. However, the
point at which formal trouble reports begin to be generated
may differ among projects. Nelson (1978) suggests that for
most of the projects in this database such reporting does not
begin until after unit testing is completed. Such a starting
point was employed on PAVE PAWS and the project seems to have
experienced an average number of errors for its size. When
the number of errors in LSDB was plotted into this figure, it
fell almost one standard error of estimate above the expected
number of errors. However, it is difficult to accurately
compare total errors across projects since they do not all
begin formal trouble reporting procedures at the same point
in project development.

2.2.3 Comparison of error categories. The error
categories from the PAVE PAWS project could be compared
against error categories from several recent RADC studies in
which data were collected on error types. The projects
covered in these studies include four projects from TRW
(Thayer et al., 1976), and single projects from Raytheon
(Williams et al., 1977), IBM (Baker, 1977), Boeing (Fries,
1977), Draper Labs (Rye et al., 1977), and Federal Electric
(LSDB, Curtis & Milliman, 1979). Most of these studies
employed an error classification scheme developed by Thayer
et al. at TRW. In a few instances additional categories were
added, and in two cases (TRW5 and LSDB) a reduced scheme was
used which combined several categories (e.g., interface
categories). The actual frequency of these errors by category
is presented in Table 10.

36

Table 9I Correlation among Error Profiles by CPCI

CPCI 2 3 4 5

2 (.62)

3 .6* (.69)

4 .65** .83** (.63)

5 .52* .54* .41 (.49)

Note: Correlations in parentheses on the diagonal
represent the average correlation for the
CPCI's error profile with that of other
CPCIs.

< .05

< .01

37

4.4

4+ 414

+ U

.4-4-0

oz
+00

+. W. 0
ono
In w-

ca rx.4
4.4

4. w4

4.44

- -0----

1 4).4

LMzrC -i N t 0 M0 C401% ~ 0 4n 40 b.C 0%
C6.G -r-4p co444%OU) in inuc 4I%a N -4 . W

7- 00 $

en C F. enAj 4.

0 cc
k-%n a N TI U--N % 'N -in #A 0

I -I0 4 ON It4~)I Nn en N-t Go r044
in a0

-P4

00

A &M -a &M0%L nm- wC

0 0

0 in C4- %[I Lr n~ ~.
iriONI &M l-d ao C4 0

0oc -4 4T .7..L j . j

44
p4% a%041

I%.0' en e0 n -40 N e 0 0 C144-

07 enc4- enG fM04 44 - Nn CD % n
U) m a% C4cnr

a)) Q 0 %Q - DN LM (-4 %0 N00Lo1 In In %0c 0s
$- 4 N
0 f

E-4 0 $4% n7 0 4 0.7 0 % i) 0h
04 W Oni% C-4 4iN - U U)0

0~0 to3
4.41 ~IU) .iU) ~ 0 N~Z ~ -4gb.. N 0

to 0A 0.
w01uA 4 - P4 01&

mo Wi r. a ,4 to
w1 44 toofV

0o " 0 U P4w
ha to v41 "-.4 . 4 01&.

04 a. uu A 1

UU caa0 "4 to0~
0144 4 $a a- uVa to0 3.0"

maa Aaaob a 01 014
W4 a44 0101 " 0

0.. 41 61 "4a" "r . -! a.

slawws 00.400101
is %-4 .0 a. W0 4 "V I" .

W4 a)w 60 2 VW(A0* 0X t

.4 v6~ 01 0 01 sw * 4 a

sw P4 101'5 1 0 A-4

39

Unfortunately the PAVE PAWS error classification scheme
was quite different from that used by other projects in the
RADC database. The computation, logic, I/O, configuration,
and documentation categories were roughly equivalent to the
categories with similar names used in the other projects.
However, in order to make comparisons possible it was
necessary to reclassify several other categories, knowing
that some inaccuracy would doubtless result from such
redefinition. Some error categories from the other studies
were also combined to facilitate comparisons. The five
interface categories in other projects and the two interface
categories in the PAVE PAWS project (Table 1, Codes 6 & 8)
were collapsed into a common interface category. The preset
database and global variable categories in other projects
were combined and compared against the database category in
PAVE PAWS. Unimplemented and unspecified functions on PAVE
PAWS were compared to requirements compliance problems on
other projects. Redesign and optimization categories on PAVE
PAWS were compared to user requested changes on other
projects although these categories may have included problems
which should have been compared to requirements compliance
errors. Keypunch and deck setup errors on PAVE PAWS were
compared to operator errors on other projects. These changes
underlie the reclassification of PAVE PAWS errors appearing
in Table 10.

In order to compare error frequencies across projects, a
subset of the error categories was selected for analysis.
These categories are listed in Table 11. The user requested
changes category was not included because not all projects
seemed to include these among trouble reports while other
categories were dropped which did not correspond to the
reclassified PAVE PAWS error scheme. For purposes of
comparison only 1787 of the 2099 PAVE PAWS trouble reports
were studied. Because there were too many discrepancies in
their categorization scheme, TRW5 and LSDB were not included
in these reduced comparisons. Table 11 presents the
frequences of these errors across projects while Table 12
presents the percent associated with their relative frequency
of occurrence. There were some obvious areas of congruence
such as the typically low percent of configuration errors and
high percentage of logic errors. However, percentages of
other categories varied in no clear pattern. Some of this
variance may be due to differences in the way project
personnel chose to classify certain types of problems.

To better compare error categories across projects,
Table 13 presents correlations among the error profiles of
the projects. The correlations observed were moderately high
with an average correlation among error profiles of 0.70.

40

IO

0% in - -w c4 M0 N. go
04 .- 4 -4- IT n T rC

08

0

1' 0 in C-4 - % 4 00 I ' A0 0 00C

o 4 -4a c.r -%

(.4 ' C0 4 Go4

$4
0

to
0- % O- M4 C. 00 co

.- 4 0m m N

0) 1.4
4. en ,C~ 04 40 t -

U

o C41 %0 'Q %C 0% r- 04 0 0 -T
W4 N4 %a U U, - 1% %a C- .-4 80 C4
'.4 C14 4 '4 -' .(1

0

3 -4 4 m % co-4

14 0

4-4

00

0 0.AU4

10 .- 0 0e w

L~ U ~ -P4 'p4
1" 04 *I=,

0 "

41

0.4

(1 -n N 0 '
pid

0
44

00

0N U) f N N 0 t -

r- - 4 N'A 0

NI -? - 0 0 I. I

oI -4 .. 4 %0N T .

444

4-) 0T () 4 N W
r: -4

a.)

C$- C. 4 0 - - 4

00

u to7 A '0 0 m '

-Hc))o 4
AUw uto 0 w a4

424

Table 13

Correlations among Error Prof iles by Project

PAVE TRW
Project PAWS 2 3 4 Raytheon IBM Boeing Draper

PAVE PAWS (.68)
TRW 2 .47 (.67)
TRW 3 .70* .84** (.72)
TRW 4 .80** *78** .87*** (.78)

Raytheon .73* .68* .69* .74* (.73)

IBM .62* .83** .69* *75** .64* (.67)

Boeing .90*** .49 .57 *73* .86** .55 (.67)

Draper .55 .63* .65* .82** .78** .63* .58* (.66)

Note: Correlations in parentheses on the diagonal represent the average
correlation for the project's error profile with that of other
project.

(.05

** -.01

.*p .00 1

43

TRW4 seemed to have the highest overall correlations with
other projects. It appears that the profile of errors on the
PAVE PAWS project is fairly typical of that experienced by
other projects.

2.2.4 Error trends over time. The frequencies of errors
in each category are presented by time period for CPCI2 in
Table 14. This was the only CPCI with a sufficient number of
errors to make trend comparisons meaningful. With the
exception of the initial 4 months and the final 6 months of
development on CPCI2, development time was divided into 3
month segments for the purpose of this analysis. Table 15
transforms each of these frequencies into the percentage of
errors within each time period contained within each
category. It is evident from these data that the percent of
logical errors steadily increased over time. The percents of
documentation and redesign errors decreased over time, with a
brief flurry of design errors identified at the end of the
project. Other categories such as I/O and configuration
errors, appear to account for large percentages during the
middle of the development period. It is clear from these
data that the profile of error categories (in terms of
relative frequencies) changes over time during software
development.

The most frequent error categories during the last 6
months generally correspond to the most frequent compile
listings reported during the same period (logic, redesign,
unimplemented function). It is surprising that more
computational errors were not reported given the frequency of
compiles listing this reason in Table 6. However, a direct
comparison is difficult given that Trouble Reports were
supposedly generated only for errors captured during
integration or higher levels of testing.

44

00 .* %l r= - O 4 N 04N 0 % 0 ~ 0

04 0

Go .%0C-A4 l L -4 L n C4 C4 -

04 r O ONm 91411 1 C N Nn
N 0%- Nq

1 C 0 P .- 4 0% cn9 .4 ID

0o c

*0 -44L

I~~04 -4 4

0 NC 00 C4

-r-4

E-4

4-4D It e mi- I.4 C4en '

Gd 0

00 C

0 04

h'0

U I..
0r 0 GD1

cccc

C. 4 0- 0D 0
r4 0 0 VJ 0 beH

0e w v 4 w D "4
"00 W- 4 44 41
Aj u4 0 0 4- %4 0 0:

0 04 0 0 GD GM. 0.

4 CL GDd GD .4 4 D C
CO 0 0 GD GD 4 W .W 000 Q GD uD 0 . 0G 0 4~

c: cc 4) .44 0 0) 0 0

45

C14
14 -4 1 ~ -. - (~.4 -4 % 4

co
4-- '.) 'D0- ~ Mt (7% 4~ W -4 0

-4 -

C14 M 1 in 0 C'4 C' %D '. . .' - .
4-4I '1 - -4

'-4

U4 Caa
CJ

CA e0 .- 4 0 -4l

M CA

(n 0'1 4 CNI 0r 0. V) M' -4 tr4

ISC1 uI (' ' .

4--j-

T,- .H q *

a)

H 0

5-4 (n

0- -4. q44 :

w-) a) CHwl)C
1-. 0 Ca

oC 4.) 44 0 a
u)U a) -44 V: a) I

r. C. 41-.- A S -' 0) -4"

u 0 0 0a w 0)0 I J 0&0
w 5.4 IS) a)i a-) '5 01 m.- C
U 4 0 to ~ 0 a) .,- 4.H -H H .4.r4W :

W M -45 -.4 0) a) -H -H4-4-C44to)

n4. Ca 0 44 Q) 0)d 444 - ~ S U a
oo CL. 0" 0 to 0) -0 L

CL-4 Ca 0 0. 0.-.. a) CLM 44-0~~~ ~ 04 J-J n- '.) Cl- S ~ u

46

3. CONCLUSIONS AND RECOMMENDATIONS

3.1 Conclusions

The PAVE PAWS software development project appears to
have achieved average success on the outcomes studied in the
data presented here. That is, it achieved the level of
productivity and experienced the number of errors expected of
projects of similar size. Although these data do not
indicate increased productivity during software development
through the use of modern programming practices, they do
suggest that these practices contribute to the kind of
control and management visibility which is required to guide
software projects to successful completion on schedule and
within budget. In particular, management found the reporting
mechanism of the Program Support Library to be of tremendous
value as a management information tool. Similarly, chief
programmers believed that the chief programmer team structure
contributed heavily to the overall performance and
manageability of the PAVE PAWS project.

Unfortunately, the available data do not allow
assessments of the separate contributions of each programming
practice, or even of the cumulative effect versus the nonuse
of such practices. However, project personnel prepared a
description of how each practice was implemented on PAVE PAWS
and assessed the success of each technique. This
assessment appears in the Raytheon final report (1979) to
RADC. The conclusions reached in that report were reiterated
in our interviews with project personnel. Briefly, these
conclusions were:

e Top-down design - makes the entire system design much
more visible from early stages, contributes to
logical progression in testing, and contributes to
component independence.

9 Structured coding - insures control flow will be much
easier to comprehend, debug, and maintain, and does
not appear to result in more code or poorly optimized
code as is often claimed.

* Indented listings - aids programmer understanding and
debugging.

* HIPO and PDL - HIPO charts seem to be valuable aids
in system and subsystem design but are cumbersome
when prepared for lower levels, while PDL has

47

numerous advantages at lower levels of system
development. Constant updating may not prove cost-
effective in a cost/benefit analysis; it should only
be done periodically.

0 Program support library - was an extremely valuable
tool for providing configuration control, unit and
integration testing, and management visibility.

Chief programmer team - provided an organizing force
to the work of project personnel. Should be staffed
at a level of five or six people and the librarian
may be shared with other teams.

e Structured walkthroughs - were beneficial when
divided into two types. Design reviews were attended
by project and customer personnel while code reviews
were attended by rarely more than two others who
could study the code in detail.

e Management information system - while PSL reports
such as code progressions were of little assistance
to programmers, they proved invaluable as a progress
tracking tool for management.

From conclusions such as these it would appear that modern
programming practices are not so much miraculous
productivity aids as they are sound management practices.
Thus, their use will reduce the risk and margin of error in
predicting and controlling project outcomes.

3.2 Recommendations

3.2.1 Technical approach to life cycle research. As is
evident in this report, the types of data necessary to
evaluate the effectiveness of various programming techniques
are not easy to collect. Although software development
efforts generate an enormous assortment of numbers, research
is not a scavenger hunt through the available data. Rather,
data collection for research purposes should be designed from
a theoretical model of the phenomena to be studied. It is
important to identify the data to be collected from the
factors in the model. Currently there are a number of
critical areas in software development in need of theoretical
models and evaluative data such as:

* Project sizing and costing

* Reliability prediction

48

* Personnel selection and performance

e Programmer team organization

o Software design and testing strategies

In order to evaluate important questions in software
engineering, a researcher must first determine the important
factors affecting the criteria of interest and how they are
related. For instance, Figure 12 presents a model of
programmer performance and identifies some of the data which
might be collected in order to evaluate various factors.
Similarly, Figure 13 presents a model of team performance and
some of the data which might be collected to evaluate this
model.

There are two primary research strategies which can be
employed in testing hypotheses from theoretical models
depending on the type of controls which can be exercised over
the variables affecting performance. In a laboratory
situation, experimental controls can be exercised by
manipulating the independent variable(s), holding all other
situational factors constant, and minimizing the effect of
individual differences among participants by randomly
assigning them to different conditions of the experiment.
The strongest causal statements can usually be made from such
rigorously controlled experiments. On the other hand,
research in field settings must usually rely on statistical
controls to study the effects of different variables.
Through the use of multivariate correlational methods such as
structural equation models or time series analysis,
underlying relationships can be teased from the data and
different causal models can be compared to determine which is
most consistent with the data. In using either experimental
or statistical controls, it is always important to identify
both the factors which may moderate the relationships
observed and the populations to which the results can be
generalized.

3.2.2 Development of a project database. In identifying
data relevant to each factor in a theoretical model, there
are a number of important considerations. First, the data
should be collected at the appropriate level of explanation.
The following are four possible levels of explanation:

* Programming environment

e Software development project

e Programming team

49

I
t

BEHAIOR CRIERI

REQUIRMENTSENVIRONME NT

ABILITIES TASK REQUIREMENTS TEAM ENVIRONMENT

* Abstract reasoning * Programming practices * Leadership style
* Verbal reasoning * Algorithm complexity * Team organization

* EDP knowledge * Machine and language * Coworkers skills

*Organizational policies

EXPERIENCE OBJECTIVE CRITERIA

* Training . Errors
* Job history * Time to completion

* Quality of code

MOTIVATION JOB BEHAVIORS SUBJECTIVE CRITERIA

e Interests r Task accounting Supervisor ratings

* Job attitudes Absenteeism * Peer ratings
E Runs aC

* Work habits

Figure 12. A model of individual programmer performance

50

II

PROGRAMMING PERFORMANCE OF
ENVIRONMENT OTHER TEAMS

BEHAVIORS TEAM CRITERIA OUTCOMES

REQUIREMENTS

OBJECTIVE
PROGRAMMING ENVIRONMENT PERFORMANCE OF OTHER TEAMS TEAM CRITERIA

" Organizational policies * Finished code e Errors
* Access-turnaround time 9 Documentation * Schedule
" Tool availability 9 Adherence to specs 0 Costs

* Quality

TEAM FACTORS TEAM BEHAVIORS PROJECT OUTCOMES

" Leadership style * Runs a Budget
" Programming practices a Communication * Schedule
* Skill mix e Integration * Costs
" Job attitudes 0 Software quality

* Software reliability

TASK REQUIREMENTS

* Algorithm complexity
* Language and machine
e Programming practices

Figure 13. A model of team productivity

51

SIndividual programmers

Data collected at the project level are not sufficient by
themselves to explain processes occurring at the level of the
individual programmer. Thus, average lines of code per
personmonth at the project level is not an adequate
criteria for investigating the productivity of individual
programmers. Performance at the project level involves effort
spent integrating the work of programmers and programming
teams above and beyond the work initially expended by
programmers in developing their code. In analyzing data
across levels of explanation it is important to specify rules
for aggregation which identify how data at one level can be
combined to explain processes occuring at the next higher
level.

Performance itself is an ambiguously defined term.
Rather than attempting to identify an ultimate criterion,
a better approach would identify multiple criteria at
several different levels of explanation. Identification of
multiple criteria represents to software development managers
the tradeoffs they must frequently make between schedule,
budget, and quality (Figure 14). Regarding criteria relevant
to schedule and budget, one can collect machine records
(runs, errors, changes, cpu time, etc.), personnel and
payroll records (manpower loadings, labor costs, absenteeism,
etc.), and managerial performance ratings. In an RADC
sponsored project, McCall, Richards, and Walters (1977)
identified myriad attributes constituting software quality
such as reliability, maintainability, portability,
efficiency, etc.

The longitudinal collection of data and use of modeling
techniques will allow an assessment of critical phases in the
life of a development project and a programming team. A
critical phase is a development step which influences
important future outcomes. Management information regarding
the outcomes of critical periods may serve as early warning
flags concerning problems in specific areas.

Table 16 presents some of the domains of data which
might be studied in a software research program. An
important distinction is made between data which are
objective versus those which are subjective. Objective data
represent direct measurements of phenomena under
consideration. Subjective data represent reports by project
participants on their backgrounds, attitudes, perceptions of
their work, etc., or in the case of managers, the performance
of their subordinates. This objective-subjective distinction
is especially important for interpreting criterion
relationships, where subjective criteria represent more of a

52

.........

0, C4.) Cn- f
cn E-

w~ z n -
1-4 0 .11

o 04

00

44

-4
Q0

0 t0

E-4

4C

E-44

@53

Table 16

Domains of Data

Objective data Subjective data

I. Team Factors I. Individual Differences

A. Programming practices A. Biographical
B. Size and composition 1. personal history
C. Task accounting 2. work experience
D. Physical environment B. Intellectural
E. Communication patterns 1. abstract reasoning

2. numerical ability
C. Personality

1. states-traits
2. interests
3. motivation

II. Task Complexity II. Perceptions

A. Requirements A. Management practices
B. System size B. Work climate
i. Complexity of code 1. task
D. Module difficulty 2. leader

3. work group
4. organization

III. Criteria III. Criteria

A. !Machine records A. Satisfaction
1. runs B. Performance ratings
2. modifications
3. errors
4. CPU time

B. Schedule completion
C. Test results
D. Personnel records

1. absenteeism
2. turnover

E. Costs
1. computer time
2. manpower

54

morale factor, and may themselves act as predictors of
objective criteria in a reciprocal causation model. The
primary domains of data to be collected are described in
general terms below. Specific variables should be selected
on the basis of a literature review.

There are a number of factors related to team
performance (Figure 13) such as its size or personnel
composition, the communication patterns established inside
and outside of the group, programming practices such as the
frequency and number of structured walkthroughs, and quality
of the physical environment such as the proximity of team
members. In addition, a task accounting system should be
implemented which keeps periodic records of the time spent by
team members on different aspects of their jobs. Post hoc
measures of the complexity of modules should also be captured
in the form of number of statements and complexity metrics
(Halstead, 1977; McCabe, 1976) since these relate to task
difficulty.

Three separate categories of individual differences
variables might be collected (Figure 12). The first category
involves biographical information describing personal-
history and work experience. The second category includes
various tests of cognitive ability such as abstract
reasoning and numerical ability which have been related to
programmer performance. The final category of individual
differences represents personality factors such as
achievpment motivation and the desire for routine versus
complex work.

Variables which describe how actual conditions are
perceived and interpreted by programmers offer insight into
how these conditions affect individual and/or team
performance. Such data has been described as the
organizational or work climate. Data on how programmers
perceive their work environment can be collected periodically
on questionnaires. These data can be used to either describe
the effects of certain programming management practices on
team members, or to predict subsequent programmer or team
performance.

Data should also be collected on code quality and
complexity. Such metrics have been proposed by Halstead
(1977), McCabe (1976), and McCall, Richards, and Walters
(1977). These metrics can be assessed on the software at
different stages of its development and used to predict
outcomes at later stages (Figure 15). These metrics can also
be used as measures of task difficulty in models of
programmer or team performance.

55

E-4

2~ U)od

4
41

0

.4 ~ 22.

E- 0
En

44
0

U)

>
1-1

- 4

0-04

244

o ow
96-

cnzo

56

Several criteria should be investigated at different
levels of analysis as described in Figure 14. The two major
classes of criteria to be collected are objective and
subjective performance measures. Some objective performance
measures can be collected on-line as each successive program
is submitted to the computer. Thus, for each routine under
development there will be a record for each run of the number
and type of modifications made and the number and type of
errors encountered. Over time a large database will emerge
which can be analyzed for programming effectiveness at the
level of either the individual programmer or the programming
team. Other data will also be available in direct or
derivable form regarding costs, completion schedules, test
results, and personnel records.

The subjective criteria to be collected involve
managerial performance evaluations of all programmers and of
each programming team. Performance evaluations could be
developed through critical incident techniques for both
programmers and teams. Table 17 presents the anticipated
frequency with which variables from different domains might
be collected.

The following considerations are critical if useful

evaluative data are to be obtained:

" Identify data relevant to each factor in a model

" Collect data at appropriate levels of explanation

" Identify multiple criteria

" Distinguish between objective and subjective data

" Distinguish between experimental and correlational
data

• Identify appropriate time lags for data collection

Data collection on programming projects often interferes
with the programming task or meets opposition from team
members. This problem can be counteracted by developing
measurement tools embedded in the system which are invisible
to programmers. Such tools would produce more reliable data
since they cannot be forgotten, ignored, or incorrectly
completed as forms frequently are. A program support library
can report module size, number of runs, and other summary
information at regular intervals, and check project status to q

alert the manager of milestones. When these collection
mechanisms are imposed unobtrusively on programming projects,
their use is more likely to gain support, and better data

57

Table 17

Frequency of Data Collection

Variable Frequency of Collection

Team Factors monthly

Task Complexity: during startup
initial rating as module completed
post hoc measures

Machine Records daily

Schedule completion as available

Testing Results as available

Personnel Records weekly

Costs monthly

Individual Differences during startup

Management Practices Survey bi-monthly

Work Climate every 6 months

Satisfaction every 6 months

Performance Ratings every 6 months

58

will be available both for management and research.

As the data base increases, data should be periodically
edited to insure accuracy. At the same time the development
of composite scores can begin where appropriate; for
instance, the development of a reduced set of composites from
the individual differences data. While such composites
should be established on conceptual grounds, multivariate
techniques such as factor analysis are available to aid the
process of data reduction. That is, only conceptually
distinct sets of data (e.g., biographical items or job
perceptions) should be entered into an empirical data
reduction technique. For data which have been collected
longitudinally, the reliability of scores to be used for
further analysis can be tested for stability as well as
internal consistency.

In summary the following guidelines for software life
cycle research are proposed:

e Begin with a theoretical model

o Identify an appropriate research strategy

o Appoint someone responsible for data collection

o Collect data which is
- appropriate to the level of explanation
- objective
- longitudinal

* Identify multiple criteria

* Hire a good statistician

The major contribution of such a research program would
be the wealth of information it would generate concerning the
management of large software development efforts,
particularly of the 'ind sponsored by DOD and other federal
agencies. Some of tht specific outcomes from such projects
would be:

o Guidelines for developing and interpreting Management
Information Systems (MIS) for tracking progress in
large software development efforts.

o Guidelines for organizing and starting up programming

projects.

o Predicting software quality and reliability.

59

o Guidelines for selection and placement of
programmers.

* Additional refinement of software life-cycle
for sizing and costing software development e

The data collected and analyzed on the PAVE PAWS
LSDB projects have provided initial examples of how si
research might be approached. The results have been
encouraging, and more comprehensive databases are neet
future progress.

60

4. REFERENCES

Baker, F.T. Chief programmer team management of production
programming. IBM Systems Journal 1972, 11, 56-73.

Baker, F.T., & Mills, H.D. Chief programmer teams.
Datamation, 1973, 19 (12), 58-61.

Baker, W.F. Software data collection and analysis: A real-
time system project history (Tech. Rep. RADC-TR-77-192).
Griffiss AFB, NY: Rome Air Development Center, 1977.
(A041644)

Barry, B.S., & Naughton, J.J. Structured Programming Series
(Vol. 10) Chief Programmer Team Operations Description
(RADC-TR-7400-300-Vol.X). Griffiss AFB, NY: Rome Air
Development Center, 1975 (NTIS No. AD-A008 861).

Belford, P.C., Donahoo, J.D., & Heard, W.J. An evaluation of
the effectiveness of software engineering techniques.
In Proceedings of COMPCON '77. New York: IEEE, 1977.

Black, R.K.E. Effects of modern programming practices on
software development costs. In Proceedings of COMPCON
'77. New York: IEEE, 1977.

Boehm, B.W. Software and its impact: A quantitative
assessment. Datamation, 1973, 19 (5), 48-59.

Brown, J.R. Modern programming practices in large scale
software development. In Proceedings of COMPCON '77.
New York: IEEE, 1977.

Curtis, B. & Milliman, P. A matched project evaluation of
modern programming practices (2 vols.). Griffiss AFB.
NY: Rome Air Development Center, 1980. RADC-TR-80-6

DeRoze, B.C. Software research and development technology in
the Department of Defense. Paper presented at the AIIE
Conference on Software, Washington, D.C., December
1977.

DeRoze, B.C., & Nyman, T.H. The software life cycle - A
management and technological challenge in the Department
of Defense. IEEE Transactions on Software Engineerina,
1978, 4, 309-318.

Dijkstra, E.W. Notes on structured programming. In O.J.
Dahl, E.W. Dijkstra, & C.A.R. Hoare (Eds.), Structured
Programming. New York; Academic Press, 1972.

61

Duvall, L.M. The design of a software analysis center. In
Proceedings of COMPSAC '77. New York: IEEE, 1977.

Fries, M.J. Software error data acquisition. (Tech. Rep.
RADC-TR-77-130). Griffiss AFB, NY: Rome Air
Development Center, 1977. (A039916)

Halstead, M.H. Elements of Software Science. New York;
Elsevier North-Holland, 1977.

Jones, T.C. Measuring programming quality and productivity.
IBM Systems Journal, 1978, 17 (1), 39-63.

Katzen, H. Systems Design and Documentation: An
Introduction to the HIPO Method. New York: Van
Nostrand Reinhold, 1976.

Lyons, E.A., & Hall, R.R. ASTROS: Advanced Systematic
Techniques for Reliable Operational Software.
Vandenburg AFB, CA: Space and Missile Test Center, 1976.

McCabe, T.J. A complexity measure. IEEE Transactions on
Software Engineering, 1976, 2, 308-320.

McCall, J.A., Richards, P.K., & Walters, G.F. Factors in
software quality (Tech. Rep. 77C1S02). Sunnyvale, CA:
General Electric, Command and Information Systems, 1977.

Mills, H.D. Mathematical foundations for structured
programming. In V.R. Basili and T. Baker (Eds.),
Structured Programming. New York: IEEE, 1975.

Myers, G.J. Composite/Structured Design. New York: Van
Nostrand Reinhold, 1978.

Myers, W. The need for software engineering. Computer,
1978, 11 (2), 12-26.

Nelson, R. Software data collection and analysis. NY: Rome
Air Development Center, 1978.

Parnas, D. On the criteria for decomposing systems into
modules. Communications of the ACM. 1972, 15, 1053-
1058.

Putnam, L.H. A general empirical solution to the macro
software sizing and estimating problem. IEEE
Transactions on Software Engineering, 1978, 4, 345-
361.

62

Raytheon. PAVE PAWS Modern Programming Data Collection
System: Final Report. Griffiss AFB; NY: Rome Air
Development Center, 1979.

Rye, P., Ostanek, W., Bamburger, F., Broden, N., & Goode, J.
Software systems development: A CSDL case history
(Tech. Rep. RADC-TR-77-213). Griffiss AFB, NY: Rome
Air Development Center, 1977. (A042186)

Salazar, J.A., & Hall, R.R. ASTROS Advanced Systematic
Techniques for Reliable Operational Software: Another
Look. Lompac, CA: Vandenburg, AFB, Space and Missile
Test Center, 1977.

Stay, J.F. HIPO and integrated program design. IBM Systems
Journal, 1976, 15, 143-154.

Stevens, W.P., Myers, G.J., & Constantine, L.L. Structured
design. IBM Systems Journal, 1974, 13, 115-139.

Tausworthe, R.C. Standardized Development of Computer
Software (2 vols.). Englewood Cliffs, NJ: Prentice-
Hall, 1979.

Thayer, T.A., et al. Software reliability study (RADC-TR-76-
238). Griffiss AFB, NY: Rome Air Development Center,
1976. (A030798)

Walston, C.E., & Felix, C.P. A method of programming
measurement and estimation. IBM Systems Journal, 1977,
18 %1), 54-73.

Willman, H.E., Beaureguard, A.A., James, T.A., & Hilcoff, P.
Software systems reliability: A Raytheon project
history (Tech. Rep. RADC-TR-77-188). Griffiss AFB, NY:
Rome Air Development Center, 1977. (A040992)

Yourdon, E., & Constantine, L.L. Structured Design:
Fundamentals of a Discipline of Computer Program and
Systems Design. Englewood Cliffs, NJ: Prentice-Hall,
1979.

Yourdon Report (Vol. 1, No. 9). New York: Yourdon, Inc.
1976.

63

ACKNOWLEDGEMENTS

We sincerely appreciate the help we received in
implementing this research from Don Roberts, our contract
monitor, and Nancy Hall, our liason at IBM. We also
appreciate the help of our colleagues Phil Milliman in data
analysis and Beverly Day for manuscript preparation. The
support and encouragement of Lou Oliver has also been
important in implementing this research.

64

Appendix A

Project Summary Forms

65

SYSTEM PAVE PAWS (Data Collected A.ainst) DATE 10/07/77

GENERAL CONTRACT / PROJECT SUvLMARY

1. Type oi Contract: FFP CPFF OTHER _FPIF

2. Total Cost (Actual or Estimated) $5. OM ICPCI's effort only)

3. Level of Subcontracting None

4. Project Environment
Dev. Team Collocated with User? No
Dev. Team Collocated with Computer? Yes
Dev. System Same as Operational System? Yes
Test & Integration Separate Organization? Yes

5. Project Description

Engineering support plus softwvare design, fabrication, and test for
(1) PAVE PAWS Tactical Software (CPCI 2) which is a real-

time system including input and output interfaces with the
PAVE PAWS Radar Controller iRCL-CPCI 6) via the
PAVE PAWS Operating System (PPOS-CPCI I). The sys-
tem has strict storage and throughput goals.

(2) PAVE PAWS Simulation Software (CPCI 3) which is a real-
time system with the same interfacing requirements as
above.

(3) PAVE PAWS Tactical Scenario Generator (CPCI 3) which
is a non-real-time data base maintenance tool used to
prepare scenario files used to drive Simulation.

(4) PAVE PAWS Data Reduction (CPCI 5) which is a non-real-
time reduction system for a large variety of recording
which is done by both CPCI 2 and CPCI 3.

(5) PAVE PAWS Program Support Library (PSL-CPCI 4) which
provides the basic software library services in a topdown,
structured environment.

6. Project Start Date 04/12/76 Est. End Date 04/12/78

7. Estimated Number of Project Personnel

Management 5 Systems Engineering 6

Chief Programmer 6 Functional Test 10

Support 6 Dev. Programr-aing 31

67

* f- -*.

8. Estimated Number of CPC'x 48

9. Estimated Number of Pages of Documentation

Requirements (Part 1) 1460 Test Reports 1200

Maeifagemen (Part 11rog0Usranuilg 600

Tspot eicaions0 ter 10

14. Estimated Total Compuer Tif Intrctos 7000 Hours 15

(wEtall d clo l MdeiatedMoter)

Contact B. Scheff (Ravtheon)

68

SYSTEM PAVE PAWS (Data Collected Against) DATE 10/07/77

MANAGEMENT METHODOLOGY SUMMARY

1. Management Procedures/Tools Used

PAVE PAWS Program Support Library (PSL) reporting

PAVE PAWS Trouble Report Procedures

Program Control Management System (PCMS - Financial)

2. Documentation Available at CDR:

a. Development Specification (Part I).- CPCI Z

b. Development Specification (Part I) - CPCI 3

c. Development Specification (Part I) - CPCI 4

d. Development Specification (Part I) - CPCI 5

e. Product Specification (Part 11) - CPCI 2

f. Product Specification (Part II) - CPCI 3

g. Product Specification (Part Ui) - CPCI 4

li. Product Specification (Part TI) - CPCI 5

NOTE: All above documents provided to customer.

3. Formal Reviews and Schedule

Dat'e

a. CPCI 2 PDR 8/76 CDR 1/77

b. CPCI 3 PDR 8/76 CDR 1/77

c. CPCI 4 PDR 7/76 CDR 9/77

d. CPCI 5 PDR 8/76 CDR 1/77,

4. AF Regulations. Manuals, and Military Standards Under Which

Development Will Be Conducted.

MIL-STD-483

MIL-STD-490

MIL-STD-152 1

69

5. Description of Deliverable Software

Refer to GENERAL CONTRACT /PROJECT SUMMARY, Item 5. for
an overview of the technical content of deliverable software. All
software will be delivered in a PSL form (either disk or checkpoint
tape).

6. Reference Measurement Gathering Procedures

Clarification required.

Contact B. Scheff (Raytheon)

70

SYSTEM PAVE PAWS (Data Collected Aeanst) DATE 10/07/77

DESIGN AND PROCESSOR SUMMARY

1. Target Computer(s) CDC CYBER 174-12
(same as development computer)

2. Processing Environment

1 Card Reader (CDC 405)

2 Line Printers (CDC 580-IZ)

3 Disk Drives (CDC 844-21)

6 CRT's (CDC 774-1)
I Plotter (Gould)

6 Tape Drives (CDC 669-2)

3. Configuration: Hands on X Batch X Remote On-line

4. Operating System(s) Version Nos. 1. 0 as modified (PPOS)

5. Compiler Version(s) JOVIAL J3

6. Assembler(s) COMPASS

7. Est. Percent: JOVIAL 85 COMPASS 15

8. Automated Software Tools Used: PAVE PAWS PSL

9. Design Standards

- MIL-STD-483, Appendix VI

- IBM FSD Software Standards (33-09)

10. Programming Standards

- PAVZ PAWS Green Sheets

- PAVE PAWS Computer Development Plan

11. Programming Techniques Employed:

Topdown Design X HIPO X

Chief Programmer X Structured Code X

Librarian X Structured Walk Thru X,

Topdown Test X Other - PDL X

71

AOOZ (d)
R&D-11I-RADC

12. List Existing PrograrnsICPC's to be Uised Standard commercial software

13. Estimated Tuzrnaround Time (HRS): Batch 2 Hours

Contact B. Scheff (Raytheon)

72

MISSION
Of

Rom Air Development Center
RAVC ptan6 and executeA u6eauhd, devetopment, te~ and
6 etected acqui26ition puA/am in zuppo't~t oj Command, Cont'we
Commuiat&on and In-tettigence (C31) activiteAs. Technicalt
and engineec.ng zAtppo~t Owthn atecu oj technic4 competenee
ia p'Lovided to ESV Pxogu'~m 0jjiae4 (P06&) and'otheA ESP
etemenUt. The pvi.nciZpat teekniuat mi,6a6on a~eaA ate
comffwxAtAona, eleaAomagnetic guidance and cornt'ot, zuA-

'Z&anLee 06 g4ound and aewo6pace objeetA, intetUgence data
cottection and haxndting, injoo'mton a6y& ten .technofrgy,
ionoApkeki.c putopa.gatin, 6otid state 6cienceA, imic.owave
phyg6cA and dectAonicZ uetabiUttf, mainn.&twbZ t and
eompoatibU.ty.

